This post is about the internals of Paperproof.
It's useful if you want to work on paperproof, on vscode-lean4, or if you want to create your own vscode extension for Lean/Coq/etc.
We have 3 pieces of code:
require Paperproof from git "https://github.com/Paper-Proof/paperproof.git"@"main"/"lean"
and import Paperproof
.All of these pieces of code can talk to each other, and all of them possess different information about what the user is up to.
Below you can see my vscode editor.
To be able to work on Paperproof (or, really, on any vscode exension), it's a good idea to get a sense for "what kind of knowledge is available to what codebase". Below I will list some examples:
So - extension, webview, and Lean library have access to different information, and we need some way to share this information between these codebases to make Paperproof work.
For example, every time the user clicks on a tactic within some theorem, we want to detect line and character of that mouse click (extension knows that); detect the InfoTree
that belongs to that line and character (Lean library knows that); and display that InfoTree
as a Paperproof tree in the webview (Webview can do that).
There are exactly three types of communication between these codebases:
.postMessage()
calls.postMessage()
callsAs just said, both of these communications happen via .postMessage()
calls.
.postMessage()
is a normal, widely supported browser api - it works in vscode (reminder that vscode is a browser-based editor, at the moment of writing it uses Chrome v128), and it will work in all modern browsers. Although widely supported, this api is rarely used in web development - working on a vscode extension was the first time I had to deal with it.
.postMessage()
was developed to enable communication between a document and the iframe embedded in it. To quote the docs:
The Channel Messaging API allows two separate scripts running in different browsing contexts attached to the same document (e.g., two
<iframe>
elements, the main document and a single<iframe>
) to communicate directly, passing messages between each other through two-way channels (or pipes) with a port at each end.
(From developer.mozilla.org/en-US/docs/Web/API/Channel_Messaging_API/Using_channel_messaging)
As it stands, "webview" in a vscode editor is nothing more than an <iframe>
embedded in a particular space in vscode's html, as you can see in the screenshot below.
<iframe>
.CMD+SHIFT+P
+ "> Developer: Open Webview Developer Tools"
command will open the dev console for you.So the conversation between our webview (embedded <iframe>
) and extension (main document) happens via the .postMessage()
calls as follows.
In webview:
const extension = acquireVsCodeApi();
extension.postMessage('hi hello');
addEventListener('message', (event) => {
const messageFromExtension = event.data;
...
});
In extension:
const webview = vscode.window.createWebviewPanel(...);
webview.webview.postMessage('red blue green');
webview.webview.onDidReceiveMessage(async (message) => {
const messageFromWebview = message;
...
}
Webview cannot directly talk to our Lean library, any such communicatin must happen with extension as an intermediary. Communication between the extension and Lean library happens via "RPC calls".
In extension:
const connection = await leanClient.sendRequest("$/lean/rpc/connect", { uri: editor.document.uri.toString() });
const response = await leanClient.sendRequest("$/lean/rpc/call", {
sessionId: connection.sessionId,
method: 'getOurInfoTree'
})
In Lean library:
@[server_rpc_method]
def getOurInfoTree (params : InputParams) : RequestM (RequestTask OutputParams) := do
withWaitFindSnapAtPos params.pos fun snap => do
let parsedTree ← BetterParser snap.infoTree
...
We get leanClient
from the vscode-lean4
extension (default Lean interface that gives you the InfoView).
This setup is generally all you need to know, but if you'd like to get a good understanding of the internals of RPC requests, you can start by reading the vscode's official guide on Language Servers: link; and the corresponding Language Server implementation in Lean: link.
Two most important Lean objects for Paperproof (and for Lean-Vscode) are Snapshot and InfoTree.
In Lean, each command (command is a syntax category - e.g., theorem
is a command, lemma
is a command, #lint
is a command) is associated with a Snapshot Lean object.
Snapshot
of the theorem mem_biUnion
starts at line 694 and ends at line 697.Given a line number and a character number, we can determine the relevant Snapshot. For example, withWaitFindSnapAtPos { line: 708, character 20 } λ snapshot => do {}
will return the snapshot for the subset_biUnion_of_mem
theorem, just like any other line & character combination within that theorem.
Request handlers usually locate and access a single snapshot in the tree based on the cursor position using withWaitFindSnap, which will wait for elaboration if it is not sufficiently progressed yet. After the snapshot is available, they can access its data, in particular the command's Syntax tree and elaboration InfoTree, in order to respond to the request.
(From github.com/leanprover/lean4/blob/master/src/Lean/Server/README.md)
The Snapshot object, in its turn, has snapshot.infoTree
field, which gives us the InfoTree object. It contains a list of tactics, and all goals and hypotheses before and after each tactic was applied. To quote the docs again:
The InfoTree is the second central server metadata structure. It is filled during elaboration with various metadata that cannot (easily) be recovered from the kernel declarations in the environment: goal & subterm infos including the precise local & metavariable contexts used during elaboration, macro expansion steps, etc. Once a relevant Snapshot
snap
has been located,snap.infoTree.smallestInfo?
and other functions fromLean.Server.InfoUtils
can be used to further locate information about a document position. The commandset_option trace.Elab.info true
instructs Lean to display the InfoTree for the declarations occurring after it.
(From github.com/leanprover/lean4/blob/master/src/Lean/Server/README.md)
Suppose we're parsing the following theorem in Paperproof:
If you pretty-print the InfoTree
of this proof, you'll get the following 3.5k-line output:
• command @ ⟨4, 0⟩-⟨15, 10⟩ @ Lean.Elab.Command.elabDeclaration • Set ℕ : Type @ ⟨5, 7⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabApp • [.] Set : some Sort.{?_uniq.1} @ ⟨5, 7⟩-⟨5, 10⟩ • Set : Type → Type @ ⟨5, 7⟩-⟨5, 10⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabIdent • [.] Nat : some Type.{?_uniq.2} @ ⟨5, 11⟩-⟨5, 14⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ • s (isBinder := true) : Set ℕ @ ⟨5, 1⟩-⟨5, 2⟩ • Set ℕ : Type @ ⟨5, 7⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabApp • [.] Set : some Sort.{?_uniq.4} @ ⟨5, 7⟩-⟨5, 10⟩ • Set : Type → Type @ ⟨5, 7⟩-⟨5, 10⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabIdent • [.] Nat : some Type.{?_uniq.5} @ ⟨5, 11⟩-⟨5, 14⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ • t (isBinder := true) : Set ℕ @ ⟨5, 3⟩-⟨5, 4⟩ • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩-⟨5, 31⟩ @ «_aux_Init_Notation___macroRules_term_=__2» • Macro expansion s ∩ t = t ∩ s ===> binrel% Eq✝ (s ∩ t) (t ∩ s) • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩†-⟨5, 31⟩† @ Lean.Elab.Term.Op.elabBinRel • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩†-⟨5, 31⟩† • s ∩ t : Set ℕ @ ⟨5, 18⟩-⟨5, 23⟩ @ «_aux_Init_Core___macroRules_term_∩__1» • Macro expansion s ∩ t ===> Inter.inter✝ s t • [.] Eq✝ : none @ ⟨5, 18⟩†-⟨5, 31⟩† • s ∩ t : Set ℕ @ ⟨5, 18⟩†-⟨5, 23⟩† @ Lean.Elab.Term.elabApp • [.] Inter.inter✝ : none @ ⟨5, 18⟩†-⟨5, 23⟩† • @Inter.inter : {α : Type} → [self : Inter α] → α → α → α @ ⟨5, 18⟩†-⟨5, 23⟩† • s : Set ℕ @ ⟨5, 18⟩-⟨5, 19⟩ @ Lean.Elab.Term.elabIdent • [.] s : some ?_uniq.10 @ ⟨5, 18⟩-⟨5, 19⟩ • s : Set ℕ @ ⟨5, 18⟩-⟨5, 19⟩ • t : Set ℕ @ ⟨5, 22⟩-⟨5, 23⟩ @ Lean.Elab.Term.elabIdent • [.] t : some ?_uniq.10 @ ⟨5, 22⟩-⟨5, 23⟩ • t : Set ℕ @ ⟨5, 22⟩-⟨5, 23⟩ • t ∩ s : Set ℕ @ ⟨5, 26⟩-⟨5, 31⟩ @ «_aux_Init_Core___macroRules_term_∩__1» • Macro expansion t ∩ s ===> Inter.inter✝ t s • t ∩ s : Set ℕ @ ⟨5, 26⟩†-⟨5, 31⟩† @ Lean.Elab.Term.elabApp • [.] Inter.inter✝ : none @ ⟨5, 26⟩†-⟨5, 31⟩† • @Inter.inter : {α : Type} → [self : Inter α] → α → α → α @ ⟨5, 26⟩†-⟨5, 31⟩† • t : Set ℕ @ ⟨5, 26⟩-⟨5, 27⟩ @ Lean.Elab.Term.elabIdent • [.] t : some ?_uniq.23 @ ⟨5, 26⟩-⟨5, 27⟩ • t : Set ℕ @ ⟨5, 26⟩-⟨5, 27⟩ • s : Set ℕ @ ⟨5, 30⟩-⟨5, 31⟩ @ Lean.Elab.Term.elabIdent • [.] s : some ?_uniq.23 @ ⟨5, 30⟩-⟨5, 31⟩ • s : Set ℕ @ ⟨5, 30⟩-⟨5, 31⟩ • commutativityOfIntersections (isBinder := true) : ∀ (s t : Set ℕ), s ∩ t = t ∩ s @ ⟨4, 8⟩-⟨4, 36⟩ • s (isBinder := true) : Set ℕ @ ⟨5, 1⟩-⟨5, 2⟩ • t (isBinder := true) : Set ℕ @ ⟨5, 3⟩-⟨5, 4⟩ • Tactic @ ⟨5, 35⟩-⟨15, 10⟩ (Term.byTactic "by" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)]))) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨5, 35⟩-⟨5, 37⟩ "by" before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)])) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)]) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨6, 7⟩ @ Lean.Elab.Tactic.Ext.evalExt (Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after case h s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t ↔ x ∈ t ∩ s • x (isBinder := true) : ℕ @ ⟨6, 6⟩-⟨6, 7⟩ • Tactic @ ⟨7, 2⟩-⟨7, 17⟩ @ Lean.Elab.Tactic.evalApply (Tactic.apply "apply" `Iff.intro) before case h s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t ↔ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t → x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] Iff.intro : none @ ⟨7, 8⟩-⟨7, 17⟩ • @Iff.intro : ∀ {a b : Prop}, (a → b) → (b → a) → (a ↔ b) @ ⟨7, 8⟩-⟨7, 17⟩ • Tactic @ ⟨9, 2⟩-⟨9, 10⟩ @ Lean.Elab.Tactic.evalIntro (Tactic.intro "intro" [`h1]) before case h.mp s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t → x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • h1 (isBinder := true) : x ∈ s ∩ t @ ⟨9, 8⟩-⟨9, 10⟩ • Tactic @ ⟨10, 2⟩-⟨10, 40⟩ @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_rwSeq_1 (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq (Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq ["rewrite" "["] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 6⟩-⟨10, 24⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `Set.mem_inter_iff) ","] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∧ x ∈ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] Set.mem_inter_iff : none @ ⟨10, 6⟩-⟨10, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type ?u.71} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ • [.] h1 : none @ ⟨10, 38⟩-⟨10, 40⟩ • h1 : x ∈ s ∩ t @ ⟨10, 38⟩-⟨10, 40⟩ • Set.mem_inter_iff : ∀ (x : ℕ) (a b : Set ℕ), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ @ Lean.Elab.Term.elabIdent • [.] Set.mem_inter_iff : none @ ⟨10, 6⟩-⟨10, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ • Tactic @ ⟨10, 25⟩-⟨10, 33⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `and_comm)] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∧ x ∈ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] and_comm : none @ ⟨10, 25⟩-⟨10, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨10, 25⟩-⟨10, 33⟩ • [.] h1 : none @ ⟨10, 38⟩-⟨10, 40⟩ • h1 : x ∈ s ∧ x ∈ t @ ⟨10, 38⟩-⟨10, 40⟩ • and_comm : x ∈ s ∧ x ∈ t ↔ x ∈ t ∧ x ∈ s @ ⟨10, 25⟩-⟨10, 33⟩ @ Lean.Elab.Term.elabIdent • [.] and_comm : none @ ⟨10, 25⟩-⟨10, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨10, 25⟩-⟨10, 33⟩ • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented ";" before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalWithAnnotateState (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")")) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 33⟩-⟨10, 34⟩ @ Lean.Elab.Tactic.evalWithAnnotateState "]" before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticTry__1 (Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalFirst (Tactic.first "first" [(group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) (group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalWithReducible (Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRfl_1 (Tactic.tacticRfl "rfl") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalCase' (Tactic.case' "case'" [(Tactic.caseArg (Lean.binderIdent (Term.hole "_")) [])] "=>" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalFail (Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.skip "skip")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalSkip (Tactic.skip "skip") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨11, 2⟩-⟨11, 10⟩ @ Lean.Elab.Tactic.evalExact (Tactic.exact "exact" `h1) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • h1 : x ∈ t ∧ x ∈ s @ ⟨11, 8⟩-⟨11, 10⟩ @ Lean.Elab.Term.elabIdent • [.] h1 : some Membership.mem.{0, 0} Nat (Set.{0} Nat) (Set.instMembership.{0} Nat) (Inter.inter.{0} (Set.{0} Nat) (Set.instInter.{0} Nat) _uniq.31 _uniq.30) _uniq.55 @ ⟨11, 8⟩-⟨11, 10⟩ • h1 : x ∈ t ∧ x ∈ s @ ⟨11, 8⟩-⟨11, 10⟩ • Tactic @ ⟨13, 2⟩-⟨13, 10⟩ @ Lean.Elab.Tactic.evalIntro (Tactic.intro "intro" [`h2]) before case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t • h2 (isBinder := true) : x ∈ t ∩ s @ ⟨13, 8⟩-⟨13, 10⟩ • Tactic @ ⟨14, 2⟩-⟨14, 40⟩ @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_rwSeq_1 (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq (Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq ["rewrite" "["] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 6⟩-⟨14, 24⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `Set.mem_inter_iff) ","] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∧ x ∈ s ⊢ x ∈ s ∩ t • [.] Set.mem_inter_iff : none @ ⟨14, 6⟩-⟨14, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type ?u.127} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ • [.] h2 : none @ ⟨14, 38⟩-⟨14, 40⟩ • h2 : x ∈ t ∩ s @ ⟨14, 38⟩-⟨14, 40⟩ • Set.mem_inter_iff : ∀ (x : ℕ) (a b : Set ℕ), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ @ Lean.Elab.Term.elabIdent • [.] Set.mem_inter_iff : none @ ⟨14, 6⟩-⟨14, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ • Tactic @ ⟨14, 25⟩-⟨14, 33⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `and_comm) ] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∧ x ∈ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • [.] and_comm : none @ ⟨14, 25⟩-⟨14, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨14, 25⟩-⟨14, 33⟩ • [.] h2 : none @ ⟨14, 38⟩-⟨14, 40⟩ • h2 : x ∈ t ∧ x ∈ s @ ⟨14, 38⟩-⟨14, 40⟩ • and_comm : x ∈ t ∧ x ∈ s ↔ x ∈ s ∧ x ∈ t @ ⟨14, 25⟩-⟨14, 33⟩ @ Lean.Elab.Term.elabIdent • [.] and_comm : none @ ⟨14, 25⟩-⟨14, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨14, 25⟩-⟨14, 33⟩ • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented ";" before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalWithAnnotateState (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")")) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 33⟩-⟨14, 34⟩ @ Lean.Elab.Tactic.evalWithAnnotateState "]" before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticTry__1 (Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalFirst (Tactic.first "first" [(group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) (group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalWithReducible (Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRfl_1 (Tactic.tacticRfl "rfl") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalCase' (Tactic.case' "case'" [(Tactic.caseArg (Lean.binderIdent (Term.hole "_")) [])] "=>" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalFail (Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.skip "skip")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalSkip (Tactic.skip "skip") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨15, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalExact (Tactic.exact "exact" `h2) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after no goals • h2 : x ∈ s ∧ x ∈ t @ ⟨15, 8⟩-⟨15, 10⟩ @ Lean.Elab.Term.elabIdent • [.] h2 : some Membership.mem.{0, 0} Nat (Set.{0} Nat) (Set.instMembership.{0} Nat) (Inter.inter.{0} (Set.{0} Nat) (Set.instInter.{0} Nat) _uniq.30 _uniq.31) _uniq.55 @ ⟨15, 8⟩-⟨15, 10⟩ • h2 : x ∈ s ∧ x ∈ t @ ⟨15, 8⟩-⟨15, 10⟩ • commutativityOfIntersections (isBinder := true) : ∀ (s t : Set ℕ), s ∩ t = t ∩ s @ ⟨4, 8⟩-⟨4, 36⟩ • command @ ⟨4, 0⟩-⟨15, 10⟩ @ Lean.Elab.Command.elabDeclaration • Set ℕ : Type @ ⟨5, 7⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabApp • [.] Set : some Sort.{?_uniq.1} @ ⟨5, 7⟩-⟨5, 10⟩ • Set : Type → Type @ ⟨5, 7⟩-⟨5, 10⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabIdent • [.] Nat : some Type.{?_uniq.2} @ ⟨5, 11⟩-⟨5, 14⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ • s (isBinder := true) : Set ℕ @ ⟨5, 1⟩-⟨5, 2⟩ • Set ℕ : Type @ ⟨5, 7⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabApp • [.] Set : some Sort.{?_uniq.4} @ ⟨5, 7⟩-⟨5, 10⟩ • Set : Type → Type @ ⟨5, 7⟩-⟨5, 10⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ @ Lean.Elab.Term.elabIdent • [.] Nat : some Type.{?_uniq.5} @ ⟨5, 11⟩-⟨5, 14⟩ • ℕ : Type @ ⟨5, 11⟩-⟨5, 14⟩ • t (isBinder := true) : Set ℕ @ ⟨5, 3⟩-⟨5, 4⟩ • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩-⟨5, 31⟩ @ «_aux_Init_Notation___macroRules_term_=__2» • Macro expansion s ∩ t = t ∩ s ===> binrel% Eq✝ (s ∩ t) (t ∩ s) • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩†-⟨5, 31⟩† @ Lean.Elab.Term.Op.elabBinRel • s ∩ t = t ∩ s : Prop @ ⟨5, 18⟩†-⟨5, 31⟩† • s ∩ t : Set ℕ @ ⟨5, 18⟩-⟨5, 23⟩ @ «_aux_Init_Core___macroRules_term_∩__1» • Macro expansion s ∩ t ===> Inter.inter✝ s t • [.] Eq✝ : none @ ⟨5, 18⟩†-⟨5, 31⟩† • s ∩ t : Set ℕ @ ⟨5, 18⟩†-⟨5, 23⟩† @ Lean.Elab.Term.elabApp • [.] Inter.inter✝ : none @ ⟨5, 18⟩†-⟨5, 23⟩† • @Inter.inter : {α : Type} → [self : Inter α] → α → α → α @ ⟨5, 18⟩†-⟨5, 23⟩† • s : Set ℕ @ ⟨5, 18⟩-⟨5, 19⟩ @ Lean.Elab.Term.elabIdent • [.] s : some ?_uniq.10 @ ⟨5, 18⟩-⟨5, 19⟩ • s : Set ℕ @ ⟨5, 18⟩-⟨5, 19⟩ • t : Set ℕ @ ⟨5, 22⟩-⟨5, 23⟩ @ Lean.Elab.Term.elabIdent • [.] t : some ?_uniq.10 @ ⟨5, 22⟩-⟨5, 23⟩ • t : Set ℕ @ ⟨5, 22⟩-⟨5, 23⟩ • t ∩ s : Set ℕ @ ⟨5, 26⟩-⟨5, 31⟩ @ «_aux_Init_Core___macroRules_term_∩__1» • Macro expansion t ∩ s ===> Inter.inter✝ t s • t ∩ s : Set ℕ @ ⟨5, 26⟩†-⟨5, 31⟩† @ Lean.Elab.Term.elabApp • [.] Inter.inter✝ : none @ ⟨5, 26⟩†-⟨5, 31⟩† • @Inter.inter : {α : Type} → [self : Inter α] → α → α → α @ ⟨5, 26⟩†-⟨5, 31⟩† • t : Set ℕ @ ⟨5, 26⟩-⟨5, 27⟩ @ Lean.Elab.Term.elabIdent • [.] t : some ?_uniq.23 @ ⟨5, 26⟩-⟨5, 27⟩ • t : Set ℕ @ ⟨5, 26⟩-⟨5, 27⟩ • s : Set ℕ @ ⟨5, 30⟩-⟨5, 31⟩ @ Lean.Elab.Term.elabIdent • [.] s : some ?_uniq.23 @ ⟨5, 30⟩-⟨5, 31⟩ • s : Set ℕ @ ⟨5, 30⟩-⟨5, 31⟩ • commutativityOfIntersections (isBinder := true) : ∀ (s t : Set ℕ), s ∩ t = t ∩ s @ ⟨4, 8⟩-⟨4, 36⟩ • s (isBinder := true) : Set ℕ @ ⟨5, 1⟩-⟨5, 2⟩ • t (isBinder := true) : Set ℕ @ ⟨5, 3⟩-⟨5, 4⟩ • Tactic @ ⟨5, 35⟩-⟨15, 10⟩ (Term.byTactic "by" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)]))) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨5, 35⟩-⟨5, 37⟩ "by" before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)])) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) [] (Tactic.apply "apply" `Iff.intro) [] (Tactic.intro "intro" [`h1]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) [] (Tactic.exact "exact" `h1) [] (Tactic.intro "intro" [`h2]) [] (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) [] (Tactic.exact "exact" `h2)]) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after no goals • Tactic @ ⟨6, 2⟩-⟨6, 7⟩ @ Lean.Elab.Tactic.Ext.evalExt (Lean.Elab.Tactic.Ext.ext "ext" [(Tactic.rintroPat.one (Tactic.rcasesPat.one `x))] []) before s t : Set ℕ ⊢ s ∩ t = t ∩ s after case h s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t ↔ x ∈ t ∩ s • x (isBinder := true) : ℕ @ ⟨6, 6⟩-⟨6, 7⟩ • Tactic @ ⟨7, 2⟩-⟨7, 17⟩ @ Lean.Elab.Tactic.evalApply (Tactic.apply "apply" `Iff.intro) before case h s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t ↔ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t → x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] Iff.intro : none @ ⟨7, 8⟩-⟨7, 17⟩ • @Iff.intro : ∀ {a b : Prop}, (a → b) → (b → a) → (a ↔ b) @ ⟨7, 8⟩-⟨7, 17⟩ • Tactic @ ⟨9, 2⟩-⟨9, 10⟩ @ Lean.Elab.Tactic.evalIntro (Tactic.intro "intro" [`h1]) before case h.mp s t : Set ℕ x : ℕ ⊢ x ∈ s ∩ t → x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • h1 (isBinder := true) : x ∈ s ∩ t @ ⟨9, 8⟩-⟨9, 10⟩ • Tactic @ ⟨10, 2⟩-⟨10, 40⟩ @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_rwSeq_1 (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq (Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h1] []))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq ["rewrite" "["] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 6⟩-⟨10, 24⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `Set.mem_inter_iff) ","] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∩ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∧ x ∈ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] Set.mem_inter_iff : none @ ⟨10, 6⟩-⟨10, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type ?u.71} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ • [.] h1 : none @ ⟨10, 38⟩-⟨10, 40⟩ • h1 : x ∈ s ∩ t @ ⟨10, 38⟩-⟨10, 40⟩ • Set.mem_inter_iff : ∀ (x : ℕ) (a b : Set ℕ), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ @ Lean.Elab.Term.elabIdent • [.] Set.mem_inter_iff : none @ ⟨10, 6⟩-⟨10, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨10, 6⟩-⟨10, 23⟩ • Tactic @ ⟨10, 25⟩-⟨10, 33⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `and_comm) ] before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ s ∧ x ∈ t ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • [.] and_comm : none @ ⟨10, 25⟩-⟨10, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨10, 25⟩-⟨10, 33⟩ • [.] h1 : none @ ⟨10, 38⟩-⟨10, 40⟩ • h1 : x ∈ s ∧ x ∈ t @ ⟨10, 38⟩-⟨10, 40⟩ • and_comm : x ∈ s ∧ x ∈ t ↔ x ∈ t ∧ x ∈ s @ ⟨10, 25⟩-⟨10, 33⟩ @ Lean.Elab.Term.elabIdent • [.] and_comm : none @ ⟨10, 25⟩-⟨10, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨10, 25⟩-⟨10, 33⟩ • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented ";" before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalWithAnnotateState (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")")) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 33⟩-⟨10, 34⟩ @ Lean.Elab.Tactic.evalWithAnnotateState "]" before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticTry__1 (Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalFirst (Tactic.first "first" [(group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) (group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalWithReducible (Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRfl_1 (Tactic.tacticRfl "rfl") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalCase' (Tactic.case' "case'" [(Tactic.caseArg (Lean.binderIdent (Term.hole "_")) [])] "=>" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]))) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalFail (Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.skip "skip")]) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨10, 2⟩†-⟨10, 40⟩† @ Lean.Elab.Tactic.evalSkip (Tactic.skip "skip") before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • Tactic @ ⟨11, 2⟩-⟨11, 10⟩ @ Lean.Elab.Tactic.evalExact (Tactic.exact "exact" `h1) before case h.mp s t : Set ℕ x : ℕ h1 : x ∈ t ∧ x ∈ s ⊢ x ∈ t ∩ s case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t • h1 : x ∈ t ∧ x ∈ s @ ⟨11, 8⟩-⟨11, 10⟩ @ Lean.Elab.Term.elabIdent • [.] h1 : some Membership.mem.{0, 0} Nat (Set.{0} Nat) (Set.instMembership.{0} Nat) (Inter.inter.{0} (Set.{0} Nat) (Set.instInter.{0} Nat) _uniq.31 _uniq.30) _uniq.55 @ ⟨11, 8⟩-⟨11, 10⟩ • h1 : x ∈ t ∧ x ∈ s @ ⟨11, 8⟩-⟨11, 10⟩ • Tactic @ ⟨13, 2⟩-⟨13, 10⟩ @ Lean.Elab.Tactic.evalIntro (Tactic.intro "intro" [`h2]) before case h.mpr s t : Set ℕ x : ℕ ⊢ x ∈ t ∩ s → x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t • h2 (isBinder := true) : x ∈ t ∩ s @ ⟨13, 8⟩-⟨13, 10⟩ • Tactic @ ⟨14, 2⟩-⟨14, 40⟩ @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_rwSeq_1 (Tactic.rwSeq "rw" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) ";" (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")"))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq (Tactic.rewriteSeq "rewrite" [] (Tactic.rwRuleSeq "[" [(Tactic.rwRule [] `Set.mem_inter_iff) "," (Tactic.rwRule [] `and_comm)] "]") [(Tactic.location "at" (Tactic.locationHyp [`h2] []))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalRewriteSeq ["rewrite" "["] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 6⟩-⟨14, 24⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `Set.mem_inter_iff) ","] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∩ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∧ x ∈ s ⊢ x ∈ s ∩ t • [.] Set.mem_inter_iff : none @ ⟨14, 6⟩-⟨14, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type ?u.127} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ • [.] h2 : none @ ⟨14, 38⟩-⟨14, 40⟩ • h2 : x ∈ t ∩ s @ ⟨14, 38⟩-⟨14, 40⟩ • Set.mem_inter_iff : ∀ (x : ℕ) (a b : Set ℕ), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ @ Lean.Elab.Term.elabIdent • [.] Set.mem_inter_iff : none @ ⟨14, 6⟩-⟨14, 23⟩ • @Set.mem_inter_iff : ∀ {α : Type} (x : α) (a b : Set α), x ∈ a ∩ b ↔ x ∈ a ∧ x ∈ b @ ⟨14, 6⟩-⟨14, 23⟩ • Tactic @ ⟨14, 25⟩-⟨14, 33⟩ @ Lean.Elab.Tactic.evalRewriteSeq [(Tactic.rwRule [] `and_comm) ] before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ t ∧ x ∈ s ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • [.] and_comm : none @ ⟨14, 25⟩-⟨14, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨14, 25⟩-⟨14, 33⟩ • [.] h2 : none @ ⟨14, 38⟩-⟨14, 40⟩ • h2 : x ∈ t ∧ x ∈ s @ ⟨14, 38⟩-⟨14, 40⟩ • and_comm : x ∈ t ∧ x ∈ s ↔ x ∈ s ∧ x ∈ t @ ⟨14, 25⟩-⟨14, 33⟩ @ Lean.Elab.Term.elabIdent • [.] and_comm : none @ ⟨14, 25⟩-⟨14, 33⟩ • @and_comm : ∀ {a b : Prop}, a ∧ b ↔ b ∧ a @ ⟨14, 25⟩-⟨14, 33⟩ • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented ";" before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalWithAnnotateState (Tactic.withAnnotateState "with_annotate_state" "]" (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")")) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 33⟩-⟨14, 34⟩ @ Lean.Elab.Tactic.evalWithAnnotateState "]" before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticTry__1 (Tactic.tacticTry_ "try" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalFirst (Tactic.first "first" [(group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]))) (group "|" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalParen (Tactic.paren "(" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) ")") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])))]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalWithReducible (Tactic.withReducible "with_reducible" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.tacticRfl "rfl")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRfl_1 (Tactic.tacticRfl "rfl") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalCase' (Tactic.case' "case'" [(Tactic.caseArg (Lean.binderIdent (Term.hole "_")) [])] "=>" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]))) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")])]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalFail (Tactic.fail "fail" [(str "\"The rfl tactic failed. Possible reasons:\n- The goal is not a reflexive relation (neither `=` nor a relation with a @[refl] lemma).\n- The arguments of the relation are not equal.\nTry using the reflexivity lemma for your relation explicitly, e.g. `exact Eq.refl _` or\n`exact HEq.rfl` etc.\"")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.skip "skip")])) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented (Tactic.tacticSeq1Indented [(Tactic.skip "skip")]) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨14, 2⟩†-⟨14, 40⟩† @ Lean.Elab.Tactic.evalSkip (Tactic.skip "skip") before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t • Tactic @ ⟨15, 2⟩-⟨15, 10⟩ @ Lean.Elab.Tactic.evalExact (Tactic.exact "exact" `h2) before case h.mpr s t : Set ℕ x : ℕ h2 : x ∈ s ∧ x ∈ t ⊢ x ∈ s ∩ t after no goals • h2 : x ∈ s ∧ x ∈ t @ ⟨15, 8⟩-⟨15, 10⟩ @ Lean.Elab.Term.elabIdent • [.] h2 : some Membership.mem.{0, 0} Nat (Set.{0} Nat) (Set.instMembership.{0} Nat) (Inter.inter.{0} (Set.{0} Nat) (Set.instInter.{0} Nat) _uniq.30 _uniq.31) _uniq.55 @ ⟨15, 8⟩-⟨15, 10⟩ • h2 : x ∈ s ∧ x ∈ t @ ⟨15, 8⟩-⟨15, 10⟩ • commutativityOfIntersections (isBinder := true) : ∀ (s t : Set ℕ), s ∩ t = t ∩ s @ ⟨4, 8⟩-⟨4, 36⟩
We feed this InfoTree
into our BetterParser.lean
(github.com/Paper-Proof/paperproof/.../BetterParser.lean), which results in the following data structure:
[ { "tacticString": "ext x", "tacticDependsOn": [], "spawnedGoals": [], "goalsAfter": [ { "username": "h", "type": "x ∈ s ∩ t ↔ x ∈ t ∩ s", "id": "_uniq.56", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] } ], "goalBefore": { "username": "[anonymous]", "type": "s ∩ t = t ∩ s", "id": "_uniq.32", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"} ] } }, { "tacticString": "apply Iff.intro", "tacticDependsOn": [], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mp", "type": "x ∈ s ∩ t → x ∈ t ∩ s", "id": "_uniq.64", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] }, { "username": "h.mpr", "type": "x ∈ t ∩ s → x ∈ s ∩ t", "id": "_uniq.65", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] } ], "goalBefore": { "username": "h", "type": "x ∈ s ∩ t ↔ x ∈ t ∩ s", "id": "_uniq.56", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] } }, { "tacticString": "intro h1", "tacticDependsOn": [], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.69", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ s ∩ t", "isProof": "proof", "id": "_uniq.68"} ] } ], "goalBefore": { "username": "h.mp", "type": "x ∈ s ∩ t → x ∈ t ∩ s", "id": "_uniq.64", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] } }, { "tacticString": "rw [Set.mem_inter_iff]", "tacticDependsOn": ["_uniq.68"], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.102", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ s ∧ x ∈ t", "isProof": "proof", "id": "_uniq.99"} ] } ], "goalBefore": { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.69", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ s ∩ t", "isProof": "proof", "id": "_uniq.68"} ] } }, { "tacticString": "rw [and_comm]", "tacticDependsOn": ["_uniq.99"], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.119", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ t ∧ x ∈ s", "isProof": "proof", "id": "_uniq.116"} ] } ], "goalBefore": { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.102", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ s ∧ x ∈ t", "isProof": "proof", "id": "_uniq.99"} ] } }, { "tacticString": "exact h1", "tacticDependsOn": ["_uniq.116"], "spawnedGoals": [], "goalsAfter": [], "goalBefore": { "username": "h.mp", "type": "x ∈ t ∩ s", "id": "_uniq.119", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h1", "type": "x ∈ t ∧ x ∈ s", "isProof": "proof", "id": "_uniq.116"} ] } }, { "tacticString": "intro h2", "tacticDependsOn": [], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.125", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ t ∩ s", "isProof": "proof", "id": "_uniq.124"} ] } ], "goalBefore": { "username": "h.mpr", "type": "x ∈ t ∩ s → x ∈ s ∩ t", "id": "_uniq.65", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"} ] } }, { "tacticString": "rw [Set.mem_inter_iff]", "tacticDependsOn": ["_uniq.124"], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.148", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ t ∧ x ∈ s", "isProof": "proof", "id": "_uniq.145"} ] } ], "goalBefore": { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.125", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ t ∩ s", "isProof": "proof", "id": "_uniq.124"} ] } }, { "tacticString": "rw [and_comm]", "tacticDependsOn": ["_uniq.145"], "spawnedGoals": [], "goalsAfter": [ { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.163", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ s ∧ x ∈ t", "isProof": "proof", "id": "_uniq.160"} ] } ], "goalBefore": { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.148", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ t ∧ x ∈ s", "isProof": "proof", "id": "_uniq.145"} ] } }, { "tacticString": "exact h2", "tacticDependsOn": ["_uniq.160"], "spawnedGoals": [], "goalsAfter": [], "goalBefore": { "username": "h.mpr", "type": "x ∈ s ∩ t", "id": "_uniq.163", "hyps": [ {"value": null, "username": "s", "type": "Set ℕ", "isProof": "data", "id": "_uniq.30"}, {"value": null, "username": "t", "type": "Set ℕ", "isProof": "data", "id": "_uniq.31"}, {"value": null, "username": "x", "type": "ℕ", "isProof": "data", "id": "_uniq.55"}, {"value": null, "username": "h2", "type": "x ∈ s ∧ x ∈ t", "isProof": "proof", "id": "_uniq.160"} ] } } ]
This is returned as JSON to the webview. In the webview, we do some more data preparation - this time using converter.ts
(github.com/Paper-Proof/paperproof/.../converter.ts), which results in the following data structure:
{ "boxes": [ { "id": "1", "parentId": null, "goalNodes": [ {"text": "s ∩ t = t ∩ s", "name": "[anonymous]", "id": "_uniq.32"}, {"text": "x ∈ s ∩ t ↔ x ∈ t ∩ s", "name": "h", "id": "_uniq.56"} ], "hypLayers": [ { "tacticId": "1", "hypNodes": [ {"text": "Set ℕ", "name": "s", "id": "_uniq.30", "isProof": "data"}, {"text": "Set ℕ", "name": "t", "id": "_uniq.31", "isProof": "data"} ] }, { "tacticId": "2", "hypNodes": [ {"text": "ℕ", "name": "x", "id": "_uniq.55", "isProof": "data"} ] } ], "hypTables": [] }, { "id": "2", "parentId": "1", "goalNodes": [ {"text": "x ∈ s ∩ t → x ∈ t ∩ s", "name": "h.mp", "id": "_uniq.64"}, {"text": "x ∈ t ∩ s", "name": "h.mp", "id": "_uniq.69"} ], "hypLayers": [ { "tacticId": "4", "hypNodes": [ {"text": "x ∈ s ∩ t", "name": "h1", "id": "_uniq.68", "isProof": "proof"} ] }, { "tacticId": "5", "hypNodes": [ {"text": "x ∈ s ∧ x ∈ t", "name": "h1", "id": "_uniq.99", "isProof": "proof"} ] }, { "tacticId": "6", "hypNodes": [ {"text": "x ∈ t ∧ x ∈ s", "name": "h1", "id": "_uniq.116", "isProof": "proof"} ] } ], "hypTables": [] }, { "id": "3", "parentId": "1", "goalNodes": [ {"text": "x ∈ t ∩ s → x ∈ s ∩ t", "name": "h.mpr", "id": "_uniq.65"}, {"text": "x ∈ s ∩ t", "name": "h.mpr", "id": "_uniq.125"} ], "hypLayers": [ { "tacticId": "8", "hypNodes": [ {"text": "x ∈ t ∩ s", "name": "h2", "id": "_uniq.124", "isProof": "proof"} ] }, { "tacticId": "9", "hypNodes": [ {"text": "x ∈ t ∧ x ∈ s", "name": "h2", "id": "_uniq.145", "isProof": "proof"} ] }, { "tacticId": "10", "hypNodes": [ {"text": "x ∈ s ∧ x ∈ t", "name": "h2", "id": "_uniq.160", "isProof": "proof"} ] } ], "hypTables": [] } ], "tactics": [ { "id": "1", "text": "init", "dependsOnIds": [], "goalArrows": [], "hypArrows": [ {"shardId": "0", "fromId": null, "toIds": ["_uniq.30", "_uniq.31"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "2", "text": "ext x", "dependsOnIds": [], "goalArrows": [ {"fromId": "_uniq.32", "toId": "_uniq.56"} ], "hypArrows": [ {"shardId": "0", "fromId": null, "toIds": ["_uniq.55"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "3", "text": "apply Iff.intro", "dependsOnIds": [], "goalArrows": [ {"fromId": "_uniq.56", "toId": "_uniq.64"}, {"fromId": "_uniq.56", "toId": "_uniq.65"} ], "hypArrows": [], "haveBoxIds": [], "byBoxIds": [] }, { "id": "4", "text": "intro h1", "dependsOnIds": [], "goalArrows": [ {"fromId": "_uniq.64", "toId": "_uniq.69"} ], "hypArrows": [ {"shardId": "0", "fromId": null, "toIds": ["_uniq.68"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "5", "text": "rw [Set.mem_inter_iff]", "dependsOnIds": ["_uniq.68"], "goalArrows": [], "hypArrows": [ {"shardId": "0", "fromId": "_uniq.68", "toIds": ["_uniq.99"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "6", "text": "rw [and_comm]", "dependsOnIds": ["_uniq.99"], "goalArrows": [], "hypArrows": [ {"shardId": "0", "fromId": "_uniq.99", "toIds": ["_uniq.116"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "7", "text": "exact h1", "dependsOnIds": ["_uniq.116"], "goalArrows": [], "hypArrows": [], "successGoalId": "_uniq.69", "haveBoxIds": [], "byBoxIds": [] }, { "id": "8", "text": "intro h2", "dependsOnIds": [], "goalArrows": [ {"fromId": "_uniq.65", "toId": "_uniq.125"} ], "hypArrows": [ {"shardId": "0", "fromId": null, "toIds": ["_uniq.124"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "9", "text": "rw [Set.mem_inter_iff]", "dependsOnIds": ["_uniq.124"], "goalArrows": [], "hypArrows": [ {"shardId": "0", "fromId": "_uniq.124", "toIds": ["_uniq.145"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "10", "text": "rw [and_comm]", "dependsOnIds": ["_uniq.145"], "goalArrows": [], "hypArrows": [ {"shardId": "0", "fromId": "_uniq.145", "toIds": ["_uniq.160"]} ], "haveBoxIds": [], "byBoxIds": [] }, { "id": "11", "text": "exact h2", "dependsOnIds": ["_uniq.160"], "goalArrows": [], "hypArrows": [], "successGoalId": "_uniq.125", "haveBoxIds": [], "byBoxIds": [] } ], "equivalentIds": { "_uniq.69": ["_uniq.102", "_uniq.119"], "_uniq.125": ["_uniq.148", "_uniq.163"] } }