[WIP] InfoTree Anatomy

InfoTree is a data structure in Lean 4 that records each tactic, the state before each tactic was applied (goals and hypotheses before) and the state after each tactic was applied (goals and hypotheses after). In Lean 4, parsing the InfoTree is the only way to get a list of tactics and their corresponding effect on the proof.

Taking a look into the general shape of the InfoTree

Suppose we're parsing the InfoTree of theorem obvs from the screenshot below. We can pretty-print the InfoTree of this proof by writing dbg_trace <- snapshot.infoTree.format, going to the VSCode's Output pane, and selecting the Lean:Editor output channel.

Pretty-printing the InfoTree will get you the following 79-line output:

Click to expand JSON
• command @ ⟨4, 0⟩-⟨6, 12⟩ @ Lean.Elab.Command.elabDeclaration
  • Prop : Type @ ⟨4, 20⟩-⟨4, 24⟩ @ Lean.Elab.Term.elabProp
  • a (isBinder := true) : Prop @ ⟨4, 14⟩-⟨4, 15⟩
  • Prop : Type @ ⟨4, 20⟩-⟨4, 24⟩ @ Lean.Elab.Term.elabProp
  • b (isBinder := true) : Prop @ ⟨4, 16⟩-⟨4, 17⟩
  • a ∧ b → b : Prop @ ⟨4, 28⟩-⟨4, 37⟩ @ Lean.Elab.Term.elabArrow
    • a ∧ b : Prop @ ⟨4, 28⟩-⟨4, 33⟩ @ «_aux_Init_Notation___macroRules_term_∧__1»
      • Macro expansion
        a ∧ b
        ===>
        And✝ a b
        • a ∧ b : Prop @ ⟨4, 28⟩†-⟨4, 33⟩† @ Lean.Elab.Term.elabApp
          • [.] And✝ : some Sort.{?_uniq.6} @ ⟨4, 28⟩†-⟨4, 33⟩†
          • And : Prop → Prop → Prop @ ⟨4, 28⟩†-⟨4, 33⟩†
          • a : Prop @ ⟨4, 28⟩-⟨4, 29⟩ @ Lean.Elab.Term.elabIdent
            • [.] a : some Prop @ ⟨4, 28⟩-⟨4, 29⟩
            • a : Prop @ ⟨4, 28⟩-⟨4, 29⟩
          • b : Prop @ ⟨4, 32⟩-⟨4, 33⟩ @ Lean.Elab.Term.elabIdent
            • [.] b : some Prop @ ⟨4, 32⟩-⟨4, 33⟩
            • b : Prop @ ⟨4, 32⟩-⟨4, 33⟩
    • b : Prop @ ⟨4, 36⟩-⟨4, 37⟩ @ Lean.Elab.Term.elabIdent
      • [.] b : some Sort.{?_uniq.7} @ ⟨4, 36⟩-⟨4, 37⟩
      • b : Prop @ ⟨4, 36⟩-⟨4, 37⟩
  • obvs (isBinder := true) : ∀ (a b : Prop), a ∧ b → b @ ⟨4, 8⟩-⟨4, 12⟩
  • a (isBinder := true) : Prop @ ⟨4, 14⟩-⟨4, 15⟩
  • b (isBinder := true) : Prop @ ⟨4, 16⟩-⟨4, 17⟩
  • Tactic @ ⟨4, 41⟩-⟨6, 12⟩
    (Term.byTactic
     "by"
     (Tactic.tacticSeq
      (Tactic.tacticSeq1Indented
       [(Tactic.intro "intro" [`ab]) [] (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))
    before 
    a b : Prop
    ⊢ a ∧ b → b
    after no goals
    • Tactic @ ⟨4, 41⟩-⟨4, 43⟩
      "by"
      before 
      a b : Prop
      ⊢ a ∧ b → b
      after no goals
      • Tactic @ ⟨5, 2⟩-⟨6, 12⟩ @ Lean.Elab.Tactic.evalTacticSeq
        (Tactic.tacticSeq
         (Tactic.tacticSeq1Indented
          [(Tactic.intro "intro" [`ab]) [] (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))
        before 
        a b : Prop
        ⊢ a ∧ b → b
        after no goals
        • Tactic @ ⟨5, 2⟩-⟨6, 12⟩ @ Lean.Elab.Tactic.evalTacticSeq1Indented
          (Tactic.tacticSeq1Indented
           [(Tactic.intro "intro" [`ab]) [] (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])
          before 
          a b : Prop
          ⊢ a ∧ b → b
          after no goals
          • Tactic @ ⟨5, 2⟩-⟨5, 10⟩ @ Lean.Elab.Tactic.evalIntro
            (Tactic.intro "intro" [`ab])
            before 
            a b : Prop
            ⊢ a ∧ b → b
            after 
            a b : Prop
            ab : a ∧ b
            ⊢ b
            • ab (isBinder := true) : a ∧ b @ ⟨5, 8⟩-⟨5, 10⟩
          • Tactic @ ⟨6, 2⟩-⟨6, 12⟩ @ Lean.Elab.Tactic.evalExact
            (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))
            before 
            a b : Prop
            ab : a ∧ b
            ⊢ b
            after no goals
            • ab.right : b @ ⟨6, 8⟩-⟨6, 12⟩ @ Lean.Elab.Term.elabProj
              • [.] ab : some _uniq.10 @ ⟨6, 8⟩-⟨6, 10⟩
              • ab : a ∧ b @ ⟨6, 8⟩-⟨6, 10⟩
              • @And.right : ∀ {a b : Prop}, a ∧ b → b @ ⟨6, 11⟩-⟨6, 12⟩
  • obvs (isBinder := true) : ∀ (a b : Prop), a ∧ b → b @ ⟨4, 8⟩-⟨4, 12⟩

This output starts from the command @ ⟨4, 0⟩-⟨6, 12⟩ @ Lean.Elab.Command.elabDeclaration line. This is expected, because the command syntax category in Lean 4 includes traditional commands (#check, #explode, etc.), import statements, and, finally, theorem statements (our case).
As can be guessed, the numbers in brackets indicate line and character numbers - this line tells us our snapshot consists of a command, and this command spans from ⟨line 4, character 0⟩ to ⟨line 6, character 12⟩.

Nested in this command node you see the various constituents of this command, sometimes repeated, and in no particular order: Prop, a, Prop, b, a ∧ b → b, obvs, a, b, Tactic ["by", "intro ab", "exact ab.2"], obvs. Notice how all of the root node children have ⟨line, character⟩ pairs that are nested under the root's ⟨4, 0⟩-⟨6, 12⟩ position - this pattern will repeat throughout the InfoTree, but doesn't always hold.

Parsing each InfoTree.node

Below you see the InfoTree data structure as defined in Lean source code.

inductive InfoTree where
  | context (i : PartialContextInfo) (t : InfoTree)
  | node    (i : Info) (children : PersistentArray InfoTree)
  | hole    (mvarId : MVarId)

inductive Info where
  | ofTacticInfo      (i : TacticInfo)
  | ofTermInfo        (i : TermInfo)
  | ofCommandInfo     (i : CommandInfo)
  | ofMacroExpansionInfo (i : MacroExpansionInfo)
  | ofOptionInfo      (i : OptionInfo)
  | ofFieldInfo       (i : FieldInfo)
  | ofCompletionInfo  (i : CompletionInfo)
  | ofUserWidgetInfo  (i : UserWidgetInfo)
  | ofCustomInfo      (i : CustomInfo)
  | ofFVarAliasInfo   (i : FVarAliasInfo)
  | ofFieldRedeclInfo (i : FieldRedeclInfo)
  | ofOmissionInfo    (i : OmissionInfo)

Whenever you see a new • in the InfoTree pretty-printing output, this indicates a new InfoTree.node.
All types of nodes (Info.ofTacticInfo, Info.ofTermInfo, Info.ofCommandInfo) are pretty-printed in different ways, however there are some commonalities. Let's list some examples of how to parse this output, going from the first line in our pretty-printed InfoTree.

CommandInfo

command @ {position}     @ {?elaborator}
• command @ ⟨4, 0⟩-⟨6, 12⟩ @ Lean.Elab.Command.elabDeclaration

When the line starts from command, it means we're deadling with Info.ofCommandInfo.
The way CommandInfo is printed is as follows:

command @
{formatStxRange ctx info.stx} @
{if info.elaborator.isAnonymous then "" else info.elaborator}

TermInfo

• {expr} {?isBinder}   : {type} @ {position}      @ {?elaborator}
• Prop                 : Type   @ ⟨4, 20⟩-⟨4, 24⟩ @ Lean.Elab.Term.elabProp
• a (isBinder := true) : Prop   @ ⟨4, 14⟩-⟨4, 15⟩
• Prop                 : Type   @ ⟨4, 20⟩-⟨4, 24⟩ @ Lean.Elab.Term.elabProp  
• b (isBinder := true) : Prop   @ ⟨4, 16⟩-⟨4, 17⟩
• a ∧ b → b            : Prop   @ ⟨4, 28⟩-⟨4, 37⟩ @ Lean.Elab.Term.elabArrow
When the line starts from what it is (in our case these are, respectively, Prop, a, Prop, b), it means we're dealing with Info.ofTermInfo.
The way TermInfo is printed is as follows:

{← Meta.ppExpr info.expr}
{if info.isBinder then "(isBinder := true) " else ""}:
{inferredType} @
{formatStxRange ctx info.stx} @
{if info.elaborator.isAnonymous then "" else info.elaborator}"

TacticInfo

• Tactic @ {position} @ {?elaborator}
  {syntax}
  before
  {goalsBefore}
  after
  {goalsAfter}

• Tactic @ ⟨4, 41⟩-⟨6, 12⟩
  (Term.byTactic "by" (Tactic.tacticSeq (Tactic.tacticSeq1Indented [(Tactic.intro "intro" [`ab]) [] (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))
  before 
  a b : Prop
  ⊢ a ∧ b → b
  after
  no goals

Finally, we come to the most interesting InfoTree.node - TacticInfo, we'll dedicate the next section to this node. 
The way TacticInfo is printed is as follows:

Tactic @
{formatStxRange ctx info.stx} @
{if info.elaborator.isAnonymous then "" else info.elaborator}" \n
{info.stx} \n
before \n
{goalsBefore} \n
after \n
{goalsAfter}

TacticInfo: the most interesting InfoTree node

As can be seen from the InfoTree inductive, each node consists of Info, and, optionally, children (an array of other InfoTrees).

inductive InfoTree where
  | context (i : PartialContextInfo) (t : InfoTree)
  | node    (i : Info) (children : PersistentArray InfoTree)
  | hole    (mvarId : MVarId)

In case with TacticInfo, this array of children is typically an array of other tactic nodes ([TacticInfo, TacticInfo, TacticInfo]).

Taking our first TacticInfo as an example (I shortened the {syntax} part to make it more explicit), we can see it represents some kind of a fake mega-tactic consisting of all of our real tactics, and telling us the proof state before and after all of our real tactics were applied.

Tactic @ ⟨4, 41⟩-⟨6, 12⟩
["by", "intro ab", "exact ab.2"]
before
a b : Prop
⊢ a ∧ b → b
after
no goals

Let's draw a tree indicating the children and descendants of this fake mega-tactic.

You can see that the real actual tactics that we are generally after are the leaf nodes in the InfoTree.
The obvious question is - should we always just go for the leaf nodes, are intermediate nodes useful for something?

Fancy proofs

Let complicate our proof a bit by inserting a have:

theorem obvs (a b : Prop) : a ∧ b → b := by
  intro ab
  have just_b := by
    exact ab.2
  exact just_b

Pretty-printing the InfoTree of this proof will get you the following 512-line output:

Click to expand JSON
• command @ ⟨6, 0⟩-⟨10, 14⟩ @ Lean.Elab.Command.elabDeclaration
  • Prop : Type @ ⟨6, 20⟩-⟨6, 24⟩ @ Lean.Elab.Term.elabProp
  • a (isBinder := true) : Prop @ ⟨6, 14⟩-⟨6, 15⟩
  • Prop : Type @ ⟨6, 20⟩-⟨6, 24⟩ @ Lean.Elab.Term.elabProp
  • b (isBinder := true) : Prop @ ⟨6, 16⟩-⟨6, 17⟩
  • a ∧ b → b : Prop @ ⟨6, 28⟩-⟨6, 37⟩ @ Lean.Elab.Term.elabArrow
    • a ∧ b : Prop @ ⟨6, 28⟩-⟨6, 33⟩ @ «_aux_Init_Notation___macroRules_term_∧__1»
      • Macro expansion
        a ∧ b
        ===>
        And✝ a b
        • a ∧ b : Prop @ ⟨6, 28⟩†-⟨6, 33⟩† @ Lean.Elab.Term.elabApp
          • [.] And✝ : some Sort.{?_uniq.6} @ ⟨6, 28⟩†-⟨6, 33⟩†
          • And : Prop → Prop → Prop @ ⟨6, 28⟩†-⟨6, 33⟩†
          • a : Prop @ ⟨6, 28⟩-⟨6, 29⟩ @ Lean.Elab.Term.elabIdent
            • [.] a : some Prop @ ⟨6, 28⟩-⟨6, 29⟩
            • a : Prop @ ⟨6, 28⟩-⟨6, 29⟩
          • b : Prop @ ⟨6, 32⟩-⟨6, 33⟩ @ Lean.Elab.Term.elabIdent
            • [.] b : some Prop @ ⟨6, 32⟩-⟨6, 33⟩
            • b : Prop @ ⟨6, 32⟩-⟨6, 33⟩
    • b : Prop @ ⟨6, 36⟩-⟨6, 37⟩ @ Lean.Elab.Term.elabIdent
      • [.] b : some Sort.{?_uniq.7} @ ⟨6, 36⟩-⟨6, 37⟩
      • b : Prop @ ⟨6, 36⟩-⟨6, 37⟩
  • obvs (isBinder := true) : ∀ (a b : Prop), a ∧ b → b @ ⟨6, 8⟩-⟨6, 12⟩
  • a (isBinder := true) : Prop @ ⟨6, 14⟩-⟨6, 15⟩
  • b (isBinder := true) : Prop @ ⟨6, 16⟩-⟨6, 17⟩
  • Tactic @ ⟨6, 41⟩-⟨10, 14⟩
    (Term.byTactic
     "by"
     (Tactic.tacticSeq
      (Tactic.tacticSeq1Indented
       [(Tactic.intro "intro" [`ab])
        []
        (Tactic.tacticHave_
         "have"
         (Term.haveDecl
          (Term.haveIdDecl
           (Term.haveId `just_b)
           []
           []
           ":="
           (Term.byTactic
            "by"
            (Tactic.tacticSeq
             (Tactic.tacticSeq1Indented [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))))))
        []
        (Tactic.exact "exact" `just_b)])))
    before 
    a b : Prop
    ⊢ a ∧ b → b
    after no goals
    • Tactic @ ⟨6, 41⟩-⟨6, 43⟩
      "by"
      before 
      a b : Prop
      ⊢ a ∧ b → b
      after no goals
      • Tactic @ ⟨7, 2⟩-⟨10, 14⟩ @ Lean.Elab.Tactic.evalTacticSeq
        (Tactic.tacticSeq
         (Tactic.tacticSeq1Indented
          [(Tactic.intro "intro" [`ab])
           []
           (Tactic.tacticHave_
            "have"
            (Term.haveDecl
             (Term.haveIdDecl
              (Term.haveId `just_b)
              []
              []
              ":="
              (Term.byTactic
               "by"
               (Tactic.tacticSeq
                (Tactic.tacticSeq1Indented [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))))))
           []
           (Tactic.exact "exact" `just_b)]))
        before 
        a b : Prop
        ⊢ a ∧ b → b
        after no goals
        • Tactic @ ⟨7, 2⟩-⟨10, 14⟩ @ Lean.Elab.Tactic.evalTacticSeq1Indented
          (Tactic.tacticSeq1Indented
           [(Tactic.intro "intro" [`ab])
            []
            (Tactic.tacticHave_
             "have"
             (Term.haveDecl
              (Term.haveIdDecl
               (Term.haveId `just_b)
               []
               []
               ":="
               (Term.byTactic
                "by"
                (Tactic.tacticSeq
                 (Tactic.tacticSeq1Indented [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))))))
            []
            (Tactic.exact "exact" `just_b)])
          before 
          a b : Prop
          ⊢ a ∧ b → b
          after no goals
          • Tactic @ ⟨7, 2⟩-⟨7, 10⟩ @ Lean.Elab.Tactic.evalIntro
            (Tactic.intro "intro" [`ab])
            before 
            a b : Prop
            ⊢ a ∧ b → b
            after 
            a b : Prop
            ab : a ∧ b
            ⊢ b
            • ab (isBinder := true) : a ∧ b @ ⟨7, 8⟩-⟨7, 10⟩
          • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticHave__1
            (Tactic.tacticHave_
             "have"
             (Term.haveDecl
              (Term.haveIdDecl
               (Term.haveId `just_b)
               []
               []
               ":="
               (Term.byTactic
                "by"
                (Tactic.tacticSeq
                 (Tactic.tacticSeq1Indented [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))))))
            before 
            a b : Prop
            ab : a ∧ b
            ⊢ b
            after 
            a b : Prop
            ab : a ∧ b
            just_b : b
            ⊢ b
            • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRefine_lift__1
              (Tactic.tacticRefine_lift_
               "refine_lift"
               (Term.have
                "have"
                (Term.haveDecl
                 (Term.haveIdDecl
                  (Term.haveId `just_b)
                  []
                  []
                  ":="
                  (Term.byTactic
                   "by"
                   (Tactic.tacticSeq
                    (Tactic.tacticSeq1Indented [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                ";"
                (Term.syntheticHole "?" "_")))
              before 
              a b : Prop
              ab : a ∧ b
              ⊢ b
              after 
              a b : Prop
              ab : a ∧ b
              just_b : b
              ⊢ b
              • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalFocus
                (Tactic.focus
                 "focus"
                 (Tactic.tacticSeq
                  (Tactic.tacticSeq1Indented
                   [(Tactic.paren
                     "("
                     (Tactic.tacticSeq
                      (Tactic.tacticSeq1Indented
                       [(Tactic.refine
                         "refine"
                         (Term.noImplicitLambda
                          "no_implicit_lambda%"
                          (Term.have
                           "have"
                           (Term.haveDecl
                            (Term.haveIdDecl
                             (Term.haveId `just_b)
                             []
                             []
                             ":="
                             (Term.byTactic
                              "by"
                              (Tactic.tacticSeq
                               (Tactic.tacticSeq1Indented
                                [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                           ";"
                           (Term.syntheticHole "?" "_"))))
                        ";"
                        (Tactic.rotateRight "rotate_right" [])]))
                     ")")])))
                before 
                a b : Prop
                ab : a ∧ b
                ⊢ b
                after 
                a b : Prop
                ab : a ∧ b
                just_b : b
                ⊢ b
                • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalFocus
                  "focus"
                  before 
                  a b : Prop
                  ab : a ∧ b
                  ⊢ b
                  after 
                  a b : Prop
                  ab : a ∧ b
                  ⊢ b
                • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalTacticSeq
                  (Tactic.tacticSeq
                   (Tactic.tacticSeq1Indented
                    [(Tactic.paren
                      "("
                      (Tactic.tacticSeq
                       (Tactic.tacticSeq1Indented
                        [(Tactic.refine
                          "refine"
                          (Term.noImplicitLambda
                           "no_implicit_lambda%"
                           (Term.have
                            "have"
                            (Term.haveDecl
                             (Term.haveIdDecl
                              (Term.haveId `just_b)
                              []
                              []
                              ":="
                              (Term.byTactic
                               "by"
                               (Tactic.tacticSeq
                                (Tactic.tacticSeq1Indented
                                 [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                            ";"
                            (Term.syntheticHole "?" "_"))))
                         ";"
                         (Tactic.rotateRight "rotate_right" [])]))
                      ")")]))
                  before 
                  a b : Prop
                  ab : a ∧ b
                  ⊢ b
                  after 
                  a b : Prop
                  ab : a ∧ b
                  just_b : b
                  ⊢ b
                  • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented
                    (Tactic.tacticSeq1Indented
                     [(Tactic.paren
                       "("
                       (Tactic.tacticSeq
                        (Tactic.tacticSeq1Indented
                         [(Tactic.refine
                           "refine"
                           (Term.noImplicitLambda
                            "no_implicit_lambda%"
                            (Term.have
                             "have"
                             (Term.haveDecl
                              (Term.haveIdDecl
                               (Term.haveId `just_b)
                               []
                               []
                               ":="
                               (Term.byTactic
                                "by"
                                (Tactic.tacticSeq
                                 (Tactic.tacticSeq1Indented
                                  [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                             ";"
                             (Term.syntheticHole "?" "_"))))
                          ";"
                          (Tactic.rotateRight "rotate_right" [])]))
                       ")")])
                    before 
                    a b : Prop
                    ab : a ∧ b
                    ⊢ b
                    after 
                    a b : Prop
                    ab : a ∧ b
                    just_b : b
                    ⊢ b
                    • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalParen
                      (Tactic.paren
                       "("
                       (Tactic.tacticSeq
                        (Tactic.tacticSeq1Indented
                         [(Tactic.refine
                           "refine"
                           (Term.noImplicitLambda
                            "no_implicit_lambda%"
                            (Term.have
                             "have"
                             (Term.haveDecl
                              (Term.haveIdDecl
                               (Term.haveId `just_b)
                               []
                               []
                               ":="
                               (Term.byTactic
                                "by"
                                (Tactic.tacticSeq
                                 (Tactic.tacticSeq1Indented
                                  [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                             ";"
                             (Term.syntheticHole "?" "_"))))
                          ";"
                          (Tactic.rotateRight "rotate_right" [])]))
                       ")")
                      before 
                      a b : Prop
                      ab : a ∧ b
                      ⊢ b
                      after 
                      a b : Prop
                      ab : a ∧ b
                      just_b : b
                      ⊢ b
                      • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalTacticSeq
                        (Tactic.tacticSeq
                         (Tactic.tacticSeq1Indented
                          [(Tactic.refine
                            "refine"
                            (Term.noImplicitLambda
                             "no_implicit_lambda%"
                             (Term.have
                              "have"
                              (Term.haveDecl
                               (Term.haveIdDecl
                                (Term.haveId `just_b)
                                []
                                []
                                ":="
                                (Term.byTactic
                                 "by"
                                 (Tactic.tacticSeq
                                  (Tactic.tacticSeq1Indented
                                   [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                              ";"
                              (Term.syntheticHole "?" "_"))))
                           ";"
                           (Tactic.rotateRight "rotate_right" [])]))
                        before 
                        a b : Prop
                        ab : a ∧ b
                        ⊢ b
                        after 
                        a b : Prop
                        ab : a ∧ b
                        just_b : b
                        ⊢ b
                        • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented
                          (Tactic.tacticSeq1Indented
                           [(Tactic.refine
                             "refine"
                             (Term.noImplicitLambda
                              "no_implicit_lambda%"
                              (Term.have
                               "have"
                               (Term.haveDecl
                                (Term.haveIdDecl
                                 (Term.haveId `just_b)
                                 []
                                 []
                                 ":="
                                 (Term.byTactic
                                  "by"
                                  (Tactic.tacticSeq
                                   (Tactic.tacticSeq1Indented
                                    [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                               ";"
                               (Term.syntheticHole "?" "_"))))
                            ";"
                            (Tactic.rotateRight "rotate_right" [])])
                          before 
                          a b : Prop
                          ab : a ∧ b
                          ⊢ b
                          after 
                          a b : Prop
                          ab : a ∧ b
                          just_b : b
                          ⊢ b
                          • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalRefine
                            (Tactic.refine
                             "refine"
                             (Term.noImplicitLambda
                              "no_implicit_lambda%"
                              (Term.have
                               "have"
                               (Term.haveDecl
                                (Term.haveIdDecl
                                 (Term.haveId `just_b)
                                 []
                                 []
                                 ":="
                                 (Term.byTactic
                                  "by"
                                  (Tactic.tacticSeq
                                   (Tactic.tacticSeq1Indented
                                    [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))))
                               ";"
                               (Term.syntheticHole "?" "_"))))
                            before 
                            a b : Prop
                            ab : a ∧ b
                            ⊢ b
                            after 
                            a b : Prop
                            ab : a ∧ b
                            just_b : b
                            ⊢ b
                            • let_fun just_b := ab.right;
                              ?m.20 just_b : b @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Term.elabNoImplicitLambda
                              • let_fun just_b := ab.right;
                                ?m.20 just_b : b @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Term.expandHave
                                • Macro expansion
                                  have just_b := by exact ab.2;
                                  ?_
                                  ===>
                                  let_fun just_b := by exact ab.2;
                                  ?_
                                  • let_fun just_b := ab.right;
                                    ?m.20 just_b : b @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Term.elabLetFunDecl
                                    • b : Prop @ ⟨8, 7⟩†-⟨8, 13⟩† @ Lean.Elab.Term.elabHole
                                    • Tactic @ ⟨8, 17⟩-⟨9, 14⟩
                                      (Term.byTactic
                                       "by"
                                       (Tactic.tacticSeq
                                        (Tactic.tacticSeq1Indented
                                         [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])))
                                      before 
                                      a b : Prop
                                      ab : a ∧ b
                                      ⊢ ?m.16
                                      after no goals
                                      • Tactic @ ⟨8, 17⟩-⟨8, 19⟩
                                        "by"
                                        before 
                                        a b : Prop
                                        ab : a ∧ b
                                        ⊢ ?m.16
                                        after no goals
                                        • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ Lean.Elab.Tactic.evalTacticSeq
                                          (Tactic.tacticSeq
                                           (Tactic.tacticSeq1Indented
                                            [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))]))
                                          before 
                                          a b : Prop
                                          ab : a ∧ b
                                          ⊢ ?m.16
                                          after no goals
                                          • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ Lean.Elab.Tactic.evalTacticSeq1Indented
                                            (Tactic.tacticSeq1Indented
                                             [(Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))])
                                            before 
                                            a b : Prop
                                            ab : a ∧ b
                                            ⊢ ?m.16
                                            after no goals
                                            • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ Lean.Elab.Tactic.evalExact
                                              (Tactic.exact "exact" (Term.proj `ab "." (fieldIdx "2")))
                                              before 
                                              a b : Prop
                                              ab : a ∧ b
                                              ⊢ ?m.16
                                              after no goals
                                              • ab.right : b @ ⟨9, 10⟩-⟨9, 14⟩ @ Lean.Elab.Term.elabProj
                                                • [.] ab : some ?_uniq.16 @ ⟨9, 10⟩-⟨9, 12⟩
                                                • ab : a ∧ b @ ⟨9, 10⟩-⟨9, 12⟩
                                                • @And.right : ∀ {a b : Prop}, a ∧ b → b @ ⟨9, 13⟩-⟨9, 14⟩
                                    • just_b (isBinder := true) : b @ ⟨8, 7⟩-⟨8, 13⟩
                                    • ?m.19 : b @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Term.elabSyntheticHole
                          • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalTacticSeq1Indented
                            ";"
                            before 
                            a b : Prop
                            ab : a ∧ b
                            just_b : b
                            ⊢ b
                            after 
                            a b : Prop
                            ab : a ∧ b
                            just_b : b
                            ⊢ b
                          • Tactic @ ⟨8, 2⟩†-⟨9, 14⟩† @ Lean.Elab.Tactic.evalRotateRight
                            (Tactic.rotateRight "rotate_right" [])
                            before 
                            a b : Prop
                            ab : a ∧ b
                            just_b : b
                            ⊢ b
                            after 
                            a b : Prop
                            ab : a ∧ b
                            just_b : b
                            ⊢ b
          • Tactic @ ⟨10, 2⟩-⟨10, 14⟩ @ Lean.Elab.Tactic.evalExact
            (Tactic.exact "exact" `just_b)
            before 
            a b : Prop
            ab : a ∧ b
            just_b : b
            ⊢ b
            after no goals
            • just_b : b @ ⟨10, 8⟩-⟨10, 14⟩ @ Lean.Elab.Term.elabIdent
              • [.] just_b : some [mdata noImplicitLambda:1 _uniq.10] @ ⟨10, 8⟩-⟨10, 14⟩
              • just_b : b @ ⟨10, 8⟩-⟨10, 14⟩
  • obvs (isBinder := true) : ∀ (a b : Prop), a ∧ b → b @ ⟨6, 8⟩-⟨6, 12⟩

Stripping away excessive nesting, we get to the following point - the fake all-encompassing mega-tactic has 3 TacticInfo children: intro ab, have just_b := ..., and exact just_b.

You can see the cleaned-up data structure here:

Click to expand JSON
• Tactic @ ⟨7, 2⟩-⟨10, 14⟩ @ [intro ab, have just_b := by exact ab.2; exact just_b] @ Lean.Elab.Tactic.evalTacticSeq1Indented
  before 
  a b : Prop
  ⊢ a ∧ b → b
  after
  no goals
  • Tactic @ ⟨7, 2⟩-⟨7, 10⟩   @ intro ab                     @ Lean.Elab.Tactic.evalIntro
    before 
    a b : Prop
    ⊢ a ∧ b → b
    after 
    a b : Prop
    ab : a ∧ b
    ⊢ b
  • Tactic @ ⟨8, 2⟩-⟨9, 14⟩   @ have just_b := by exact ab.2 @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticHave__1
    before 
    a b : Prop
    ab : a ∧ b
    ⊢ b
    after 
    a b : Prop
    ab : a ∧ b
    just_b : b
    ⊢ b
    • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [refine_lift have just_b := by exact ab.2] @ Lean.Parser.Tactic._aux_Init_Tactics___macroRules_Lean_Parser_Tactic_tacticRefine_lift__1
      before 
      a b : Prop
      ab : a ∧ b
      ⊢ b
      after 
      a b : Prop
      ab : a ∧ b
      just_b : b
      ⊢ b
      • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ focus [(refine no_implicit_lambda have just_b := by exact ab.2 _, rotate_right] @ Lean.Elab.Tactic.evalFocus
        before 
        a b : Prop
        ab : a ∧ b
        ⊢ b
        after 
        a b : Prop
        ab : a ∧ b
        just_b : b
        ⊢ b
        • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ focus @ Lean.Elab.Tactic.evalFocus
          before 
          a b : Prop
          ab : a ∧ b
          ⊢ b
          after 
          a b : Prop
          ab : a ∧ b
          ⊢ b
        • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [refine no_implicit_lambda, have just_b := by exact ab.2; rotate_right] @ Lean.Elab.Tactic.evalTacticSeq
          before 
          a b : Prop
          ab : a ∧ b
          ⊢ b
          after 
          a b : Prop
          ab : a ∧ b
          just_b : b
          ⊢ b
          • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [(refine no_imlicit_lambda have just_b := by exact ab.2 _, rotate_right)] @ Lean.Elab.Tactic.evalTacticSeq1Indented
            before 
            a b : Prop
            ab : a ∧ b
            ⊢ b
            after 
            a b : Prop
            ab : a ∧ b
            just_b : b
            ⊢ b
            • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [(refine no_implicit_lambda have just_b := by exact ab.2 _, rotate_right)] @ Lean.Elab.Tactic.evalParen
              before 
              a b : Prop
              ab : a ∧ b
              ⊢ b
              after 
              a b : Prop
              ab : a ∧ b
              just_b : b
              ⊢ b
              • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [refine no_implicit_lambda have just_b := by exact ab.2 _, rotate_right] @ Lean.Elab.Tactic.evalTacticSeq
                before 
                a b : Prop
                ab : a ∧ b
                ⊢ b
                after 
                a b : Prop
                ab : a ∧ b
                just_b : b
                ⊢ b
                • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [refine no_implicit_lambda have just_b := by exact ab.2 _, rotate_right] @ Lean.Elab.Tactic.evalTacticSeq1Indented
                  before 
                  a b : Prop
                  ab : a ∧ b
                  ⊢ b
                  after 
                  a b : Prop
                  ab : a ∧ b
                  just_b : b
                  ⊢ b
                  • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ [refine no_implicit_lambda have := by exact ab.2 _] @ Lean.Elab.Tactic.evalRefine
                    before 
                    a b : Prop
                    ab : a ∧ b
                    ⊢ b
                    after 
                    a b : Prop
                    ab : a ∧ b
                    just_b : b
                    ⊢ b
                    • Tactic @ ⟨8, 17⟩-⟨9, 14⟩ @  [by exact ab.2] 
                      before 
                      a b : Prop
                      ab : a ∧ b
                      ⊢ ?m.16
                      after
                      no goals
                      • Tactic @ ⟨8, 17⟩-⟨8, 19⟩ @  by 
                        before 
                        a b : Prop
                        ab : a ∧ b
                        ⊢ ?m.16
                        after
                        no goals
                        • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ [exact ab.2] @ Lean.Elab.Tactic.evalTacticSeq
                          before 
                          a b : Prop
                          ab : a ∧ b
                          ⊢ ?m.16
                          after
                          no goals
                          • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ [exact ab.2] @ Lean.Elab.Tactic.evalTacticSeq1Indented
                            before 
                            a b : Prop
                            ab : a ∧ b
                            ⊢ ?m.16
                            after
                            no goals
                            • Tactic @ ⟨9, 4⟩-⟨9, 14⟩ @ exact ab.2 @ Lean.Elab.Tactic.evalExact
                              before 
                              a b : Prop
                              ab : a ∧ b
                              ⊢ ?m.16
                              after
                              no goals
                  • Tactic @ ⟨8, 2⟩-⟨9, 14⟩ @ rotate_right @ Lean.Elab.Tactic.evalRotateRight
                    before 
                    a b : Prop
                    ab : a ∧ b
                    just_b : b
                    ⊢ b
                    after 
                    a b : Prop
                    ab : a ∧ b
                    just_b : b
                    ⊢ b
  • Tactic @ ⟨10, 2⟩-⟨10, 14⟩ @ exact just_b                 @ Lean.Elab.Tactic.evalExact
    before 
    a b : Prop
    ab : a ∧ b
    just_b : b
    ⊢ b
    after
    no goals

The first node (intro ab) and the third node (exact just_b) are leaf nodes, and give us clear before/after states.
The second node (have just_b := ...) is an intermediate node, and contains many descendants - of which the leaf nodes are the most useful.

Where is the InfoTree created?

We are most interested in Info.ofTacticInfo InfoTrees, so let's look into the place where those are created.

If you read the "Overview" chapter in "Metaprogramming In Lean" textbook (link), you might remember the process of elaboration in Lean is as follows:
1. apply a relevant syntax rule ("let a := 2"Syntax)
2. apply all macros in a loop (SyntaxSyntax)
3. apply a single elab (SyntaxExpr)

Function evalTactic() is where the tactic nodes in our InfoTree get created.
Coincidentally, function evalTactic() is a function where the elaboration process described above happens.

def mkTacticInfo (mctxBefore : MetavarContext) (goalsBefore : List MVarId) (stx : Syntax) : TacticM Info :=
  return Info.ofTacticInfo {
    elaborator    := (← read).elaborator
    mctxBefore    := mctxBefore
    goalsBefore   := goalsBefore
    stx           := stx
    mctxAfter     := (← getMCtx)
    goalsAfter    := (← getUnsolvedGoals)
  }

def mkInitialTacticInfo (stx : Syntax) : TacticM (TacticM Info) := do
  let mctxBefore  ← getMCtx
  let goalsBefore ← getUnsolvedGoals
  return mkTacticInfo mctxBefore goalsBefore stx

@[inline] def withTacticInfoContext (stx : Syntax) (x : TacticM α) : TacticM α := do
  withInfoContext x (← mkInitialTacticInfo stx)

partial def evalTactic (stx : Syntax) : TacticM Unit := do
  profileitM Exception "tactic execution" (decl := stx.getKind) (← getOptions) <|
  withRef stx <| withIncRecDepth <| withFreshMacroScope <| match stx with
    | .node _ k _    =>
      if k == nullKind then
        -- Macro writers create a sequence of tactics `t₁ ... tₙ` using `mkNullNode #[t₁, ..., tₙ]`
        -- We could support incrementality here by allocating `n` new snapshot bundles but the
        -- practical value is not clear
        -- NOTE: `withTacticInfoContext` is used to preserve the invariant of `elabTactic` producing
        -- exactly one info tree, which is necessary for using `getInfoTreeWithContext`.
        Term.withoutTacticIncrementality true <| withTacticInfoContext stx do
          stx.getArgs.forM evalTactic
      else withTraceNode `Elab.step (fun _ => return stx) (tag := stx.getKind.toString) do
        let evalFns := tacticElabAttribute.getEntries (← getEnv) stx.getKind
        let macros  := macroAttribute.getEntries (← getEnv) stx.getKind
        if evalFns.isEmpty && macros.isEmpty then
          throwErrorAt stx "tactic '{stx.getKind}' has not been implemented"
        let s ← Tactic.saveState
        expandEval s macros evalFns #[]
    | .missing => pure ()
    | _ => throwError m!"unexpected tactic{indentD stx}"
where
    ...
    expandEval (s : SavedState) (macros : List _) (evalFns : List _) (failures : Array EvalTacticFailure) : TacticM Unit :=
      match macros with
      | [] => eval s evalFns failures
      | m :: ms =>
        try
          withReader ({ · with elaborator := m.declName }) do
            withTacticInfoContext stx do
              let stx' ← adaptMacro m.value stx
              -- Support incrementality; see also Note [Incremental Macros]
              if evalFns.isEmpty && ms.isEmpty then  -- Only try incrementality in one branch
                if let some snap := (← readThe Term.Context).tacSnap? then
                  let nextMacroScope := (← getThe Core.State).nextMacroScope
                  let traceState ← getTraceState
                  let old? := do
                    let old ← snap.old?
                    -- If the kind is equal, we can assume the old version was a macro as well
                    guard <| old.stx.isOfKind stx.getKind
                    let state ← old.val.get.data.finished.get.state?
                    guard <| state.term.meta.core.nextMacroScope == nextMacroScope
                    -- check absence of traces; see Note [Incremental Macros]
                    guard <| state.term.meta.core.traceState.traces.size == 0
                    guard <| traceState.traces.size == 0
                    return old.val.get
                  Language.withAlwaysResolvedPromise fun promise => do
                    -- Store new unfolding in the snapshot tree
                    snap.new.resolve <| .mk {
                      stx := stx'
                      diagnostics := .empty
                      finished := .pure {
                        diagnostics := .empty
                        state? := (← Tactic.saveState)
                      }
                      next := #[{ range? := stx'.getRange?, task := promise.result }]
                    }
                    -- Update `tacSnap?` to old unfolding
                    withTheReader Term.Context ({ · with tacSnap? := some {
                      new := promise
                      old? := do
                        let old ← old?
                        return ⟨old.data.stx, (← old.data.next.get? 0)⟩
                    } }) do
                      evalTactic stx'
                  return
              evalTactic stx'
        catch ex => handleEx s failures ex (expandEval s ms evalFns)

    eval (s : SavedState) (evalFns : List _) (failures : Array EvalTacticFailure) : TacticM Unit := do
      match evalFns with
      | []              => throwExs failures
      | evalFn::evalFns => do
        try
          -- prevent unsupported tactics from accidentally accessing `Term.Context.tacSnap?`
          Term.withoutTacticIncrementality (!(← isIncrementalElab evalFn.declName)) do
          withReader ({ · with elaborator := evalFn.declName }) do
          withTacticInfoContext stx do
            evalFn.value stx
        catch ex => handleEx s failures ex (eval s evalFns)